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As a result of the 1974 Congressional amendment of the law governing

ESEA Title I programs, RCM Research Corporation developed a set of alterna-

tive evaluation models intended to provide a standardized framework from

which to judge the effects of the Title I effort at the federal level.

Each of the models was presented to the United States Office of Education

(USOE) as a means of obtaining an unbiased estimate of the no-treatment

expectation, provided that the assumptions of each model could be adequately

satisfied. The three nrdels developed by RMC Research Corporation are the

Control Group Model (Model B), the Special Regression Model (Model C) and

the Norm Referenced Model (Model A).

The intent for all three models is to provide an unbiased estimate of

the Title I treatment effect which RMC has defined as

Obtained Expected

Treatment effect = Posttest performance - Posttest performance.

The models differ primarily in the way in which the "expected posttest

performance" is obtained. RMC defines this "expected posttest performance"

or "no-treatment expectation" as the performance of Title I students who

had not received any special instructional intervention.

In this paper we focus on fkKlel A, the Norm Referenced Model because

it is the most popular model among LEAs at the present time, and because it

appears to be the model most prone to biased estimates of the no-treatment

expectation. The major assumption underlying Model A is the "equipercentile"

assumption. The basic concept is that students will maintain their per-

centile rank over a one year instructional -c-d provided that no special

instructional intervention is introduced.

The control group of Model A is essentially the norm group used for a

particular standardized achievement test, since the national percentiles are
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obtained from this source. Furthermore, since the pretest percentiles are,

by definition, the no-treatment expectation under the equipercentile assump-

tion, the Title I treatment effect for Model A is simply defined as the

average posttest performance minus the average pretest performance.

One of the major disadvantages of Model A is that Title I participants

are generally selected on the basis of poor academic performance. And we

know that low scoring students are likely to regress towards the population

mean on a second measurement even with no special instructional interven-

tion. In an effort to avoid this problem, Tallmadge (1976) recommended

that selection of Title I participants be based upon some measure other

than the pretest. The assumption that Tallmadge (1976) made is that all of

the regression that is going to occur would do so between the selection

measure and the pretest. Therefore, an unbiased estimate of the no-treatment

expectation could be obtained.

Class (1978) and Murray (1978) clearly demonstrate, however, that the

use of a separate selection measure does not guarantee the elimination of

all regression between the pretest and the posttest, although they do note

that a reduction in the magnitude of the regression is to be expected.

Murray (1978) further indicates that the only time that all regression

would be eliminated when a selection test is used, is when the selection-

pretest correlation -qual to the selection-posttest correlation.

The problem then, is to develop an unbiased estimate of the no-treatment

expectation given that the selection procedure into Title I is fully under-

stood. Murray (1978) has proposed one such estimalicn procedure which

may lead to less biased estimates. In addition, there is the traditional

multiple linear regression approach to this estimation task assuming some

degree of multivariate normality and linearity.

The purpose of this paper is to investigate, through a limited

simulation, the sampling distributions of these two estimation models and
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to determine the magnitude and direction of bias, if any, as well as the

size of the standard errors under the assumptions of multivariate normality

and linearity. The concern of greatest importance is that an estimation

model will lead to large standard errors and consequently lead to frequent

underestimates of the actual treatment effect.

The following notation will be used throughout this paper:

X
o

= Selection test given at time 6.

X
1

= Pretest given at time 1.

X2 = Posttest given at time 2.

r = Will represent population correlations.

Z = Unit normal standard scores.

Z = Estimated mean.

Z = Obtained mean.

Estimation Procedures

The approach adopted by Murray (1978) for deriving the no-treatment

expectation under a selection, pretest-posttest design, was to use a

set of structural equations in a recursive path analytic paradigm. In

addition to the three achievement measures, the paradigm included a group

factor, an individual differences within group factor and an error

component. The result of this path analytic approach indicates that an

unbiased estimate of the no-treatment expectation can be obtained using

the ratio of two correlations; the correlation of selection with posttest

iofover the correlation o selection with pretest (rx ) or rx /r
(rx x ) x x x x '

0 2 0 1 0 2 0 1

times the estimated pretest mean. Murray points out that this estimate takes

into account the distance of the treatment. group mean from the population

mean as well as the temporal erosion expressed by the ratio. Using standard

score form, Murray's (1978) estimate of the no-treatment expectation i!,;
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(1) Z2 = (r /r )
x0x2 xoxi

where 2 is the estimated posttest mean,

Z1 is the estimated pretest mean,

.L

and Zl is obtained using Z1 = r Z
xoxi 0

It becomes apparent when examining (1) that the regression effect from

pretest to posttest will equal zero only when rx x = r
0 1

x x

As with all estimates of regression, this model is paramet( lependent

in that population correlations, means and variances (or very good estimates

of them) are required. In a sense Murray's procedure is a stagewise

approach in that Z, must be estimated from Z0 prior to estimating Z2- . That

is, we first determine the regression from selection to pretest and then we

compute the remaining regression from pretest to posttest using the ratio

in (1). Actually, this stagewise process is not necessary since the same

result can be obtained directly from

(2) Z2 = r Zo.
X
0
X
2

In fact this linear form appears in Murray's derivation one step prior to

the ratio form. Through a simple substitution we have

Z2 (r ir )x0x2 xoxi

but Z1 = rx
u

so = r /r (r in)
x0x2 xoxi xoxi

= r
x0x2 0:

This linear form, however, is less informative when a selection test is in

use. For example, it would not be apparent from (2) that pretest to

posttest regression is eliminated only when rx x = rx x
0 1 0 2

The second estimation method examined in this paper is simply a direct

extension of the one independent variable regression situation. When students

are selected only on the pretest (with no prior preselection) then pretest

to posttest regression is estimated directly from

rx x
1 2
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When a selection test is added to the picture, the logical extension is a

multiple regression of the form

(3) 1.2 = bi Z0 + b2 Z1 ,

where b
1

= Cr - r r )/ 1 - r
2

x0x2 xix2 xoxi
0
X
1

and b
2

= (r
xix2

- r
x0x2

r
xoxi

)/ 1 - r2

As in the case of (1), this form is parameter dependent in the correlations.

However, in this case there is no need to estimate Z1. Both the ratio form

and the multiple linear form require the assumption of linearity and

homogeneity of regression.

The questions of interest in this paper are 1) are the standard errors

of the sampling distributions of (Z2 - Z2) sufficiently small to eliminate

any major risk of underestimating the treatment effect, and 2) does varying

5

the correlations significantly affect these standard errors?

Simulation Procedure

In order to simulate the regression effect of interest, it was necessary

to produce three normally distributed random variables with specified

intercorrelations. These variables could then serve as selection, pretest

and posttest scores. The method used in this study is described in detail

by Kaiser and Dickman (1962). The procedure uses component analysis for

generating a sample score matrix (Z) and a correlation matrix (R) when

given a specified population correlation matrix (R). The fundamental

postulate of component analysis is

Z = FX,

where F is any factoring of R and X is a population score matrix. The

components in F must be uncorrelated such as principal components or

square root components. The sample score matrix is then produced using

Z = FX
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where X is a matrix containing sample values from a normally distributed

random variable. The variables in X are uncorrelated but the variables in

Z are correlated according to the population correlation matrix (R).

The computer routine used in this study is GGNRM and it is found in

the International Mathematics and Statistical Library (IMSL) package. It

is an accurate, but slow and costly routine. The primary inputs to GGNRM

are the population correlations, the number of cases to be generated and a

seed to start the random number generator.

In this study, 3 x 3 correlation matricies were used and a 3 by 500

score matrix was generated. Descriptive statistics were then accumulated

including the reproduced (sample) correlation matrix. This procedure was

executed for 300 iterations in order to obtain a reasonable estimate of

the sampling distributions of interest. This study is limited to a sample

size of 500 due to the excessive time required.

The procedure involves using the first of the three score vectors as

the selection test and selecting cases on the basis of a cutoff score. In

this case, we are dealing with a multivariate normal distribution and

therefore a Z of -.52 was used to select approximately the lower scoring

30% of the cases. After each iteration, we computed descriptive statistics

on the total 500 cases as well as on the lower scoring 30% or about 150

cases that are of special interest.

Since a multivariate normal generator was used, it was a relatively

simple matter to derive the expected values of all three variables. The

first step involved determining the population mean of the lower scoring

30 percent. This is accomplished using

7: = 11)(Z)/(Z),

where 11)(Z) is the height of the ordinate at a Z of -.52 and 4)(Z) is the

probability associated with a Z of -.52. Therefore we expect that the mean
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of the selection test variable will be

Z = ip(-.52) / (p(-.52)

= .3485/.3015

= -1.1559.

Or, in terms of the NCE metric with mean of 50 and a a of 21.06 we have

Z= 21.06 (-1.1559) 4- 50 = 25.6570.

In order to determine the expected pretest and posttest values, it is

necessary to specify the correlations. For example in the run that used

.9, .8, .9 as selection - pre, selection - post,and pre - post correlations

respectively, the expected pretest value is

Z = r
1 xoxi 0

= .9 (-1.1559)

= -1.04,

or in NCEs Z = 28.09. The expected posttest value can then be

determined using either estimation formula (1) or (3) since all input

values are the same. Using (1) in this example we have

Z
2
= rx x

/ r )x x 1

0 2 0 1

= .8/.9 (-1.04)

= -.92,

or in NCEs Z2 = 30.53.

The values of particular interest in this study, however, are the

differences between obtained and estimated posttest means and the

corresponding standard errors for these differences.
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Results and Discussion

All computations were performed using unit normal standard scores

(Z scores). For reporting purposes, these Z scores were then transformed

to the NCE metric using

NCE = 21.06Z + 50.

The four correlation pattern runs were based upon a simulated district

size of 500 cases per grade. Selection was based upon a Z of -.52 corres-

ponding to the 30th percentile. Therefore, there were approximately 150

cases in each selected group. The means and standard errors reported in

this paper were based upon a sampling distribution of 300 weighted averages.

The range of sample sizes ran from 120 to 180.

Table I shows the population and reproduced sample correlations for each

of the four runs. These correlations were selected in order to examine the

effects of high, moderate, and low patterns. Run 2 was selected to demonstrate

the case in which r = r
x0x2 x0x1

Table II shows the obtained and estimated regression effects and corres-

ponding standard errors, for selection to pretest, pretest to posttest and

selection to posttest by run. In addition, the table shows the differences

between obtained and estimated posttest means and corresponding standard

errors. As would be anticipated, the magnitude of the correlations is

inversely related to the amount of regression and to the size of the standard

errors.

Run 1 represents the lowest set of correlations and consequently the

greatest allount of regression. The pretest to posttest regression was just

a little under 5 .'s. The regression estimates were all quite close to

the obtained values.
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TABLE I

Population and Reproduced Sample Correlations by Run

Sel-Pre Pre-Post Sel-Post

Pop. .7 .6 .5

Run 1 Sample .7017 .5982 .5006

Pop. .6 .7 .6

Run 2 Sample .6016 .7017 .5981

Pop. .8 .8 .6

Run 3 Sample .8001 .8000 .5997

Pop. .9 .9 .8

Run 4 Sample .9003 .9002 .8001

1 1
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TABLE 11

OBTAINED AND ESTIMATED REGRESSION WITH STANDARD ERRORS BY RUN

(VALUES ARE EXPRESSED IN NCE UNITS)

Run 1

S.E.

Estimated RegressionObtained Regression

Amount Amount S.E.

Sel-Pre 7.177 1.342 7.221 1.308

Pre-Post 4.830 1.575 4.969* 1.320

Sel-Post 12.006 1.660 12.146 .476

(22
-

22

Ratio Mult. Linear

Amount S.E. Amount S.E.

-.140 1.553 -.085 1.407

Run 2

Estimated RegressionObtained Regression

Amount S.E. Amount S.E.

Sel-Pre 9.611 1.306 9.728 .385

Pre-Post .105 1.260 .117* 1.292

Sel-Post 9.715 1.396 9.728 .385

Ratio

Amount S.E.

-.013 1.339

2)

12

Mult. Linear

Amount

.05

S.E.

1.126
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TABLE 11 (continued)

Run 3

Obtained Regression Estimated Regression

Amount S-E. Amount S.E.

Sel-Pre 4.942 1.047 4.877 .177

Pre-Post 4.867 1.063 4.812* 1.042

Sel-Post 9.790 1.475 9.753 .355

Ratio Mult. Linear

I'Vqount S.E. Amount

.037 1.426 -.021

S.E.

1.047

Run 4

Obtained Regres,-;ion Estimated Regression

Amount S.C. Amount S.E.

Sel.-Pre 2.485 .754 2.438 .089

Pre-Post 2.421 .769 2.391* .
.752

Sel-Post 4.906 1.086 4.877 .177

Ratio

(7
2

Mult. Linear

Amount S.E. Amount

.03 1.069 -.015

*This value represents the ratio estimate.

S.F.

.764
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For both the ratio and multiple linear estimators, there was a slight

tendency to overestimate the no-treatment expectation when comparing obtained

and expected posttest means. The magnitude of this overestimation is so

small that it is of little pragmatic importance. On the other hand, the

standard errors of both estimators appear to he too large to risk their use

in estimating no-treatment expectations. That is, it would be quite possibl.

for an LEA with 500 students or less per grade to underestimate Title 1

treatment effects by Is much as two or three NCE's Using either estimator.

Run 2 also reflects relatively low correlations, however, in this case

the population correlations were selected such that r
X X

= r
x

As can
0 "' 0 1

he seen, the amount of statistical regression from pretest to posttest is

only about one-tenth of an NCE. Again the two estimators are quite accurate

in their forecast. Although this result does demonstrate that pretest 1

po,,tte::t regression is virtually eliminated when r
x

= r X X regardless ofX01
0 2 0 1

the size of r , the standard errors associated with (7. - 7. ) Are again
x

1

x
'

2 2

too large to recommend that either estimator he used. In this case, under-

estimates of treatment effect as great as two NCE's arc still quite possible.

In Run 3 the correlations are moderately high with the exception of

And since this correlation is critical to the pretest to posttest
X
0
X
2

regression, it is not surprising to find a pretest posttest regression

of almost 5 Ncr H'iwever, the standard errors are all slightly smaller

due to the increA magnitude of the other correlations.

it is also interesting to note that in this case both estimators produced

sampling 7.an differences between obtain,d and estimated posttest means of

less tha,1 6/100 of an NCF. Although there is a slight drop in the standard

errors associated with U.
2

-
2

) in this run, they are still ton large to

risk using either estimator.
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Finally, in Run 4 the correlations are relatively high with r set
x x,
0 2

at .8. In this case the pretest to posttest regression has dropped to 2.4

NCE's. The standard errors associated with (Z2 - ) are also smaller than

those in runs one through three. Unfortunately, even these standard errors

could result in underestimating the treatment effects by as much as 1.5 to

2 NCE's depending on the estimator used.

The results of this limited simulation indicate that, at least for

districts with 500 or fewer students per grade and correlations of .9

or lower, the ratio and multiple linear estimators do not provide a viable

option for obtaining an unbiased estimate of the no-treatment expectation.

The chances of over estimating the no-treatment expectation are too great

and consequently too many LEAs could end up seriously underestimating their

treatment effects. On the other hand, it is possible that, for districts

with 2,000 or more students per grade, either estimator would produce estimates

with sufficiently small star, lard errors.

Another, and perhaps more viable opt ion, is to use local correlations

rather than requiring population correlation. In this case, we would he

defining the population mean toward which low scoring students would

regress as the district mean per grade. This might be a particularly

attractive approach when the district means are close to the national

means. One drawback to this approach would be that correlations would

have to he based on non-Title I participants. As a result, there would

be some attenuation du to restriction in range. However, the estimates

are still likely to be more accurate and less variable than when depending

upon national correlation data.
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